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Abstract This paper studies whether to describe nonlinearity, seasonality and long
memory simultaneously in US inflation rates. To this aim, we define a seasonal
FISTAR (SEA-FISTAR) model as an extension of FISTAR model proposed by Van
Dijk et al. (J Economet 102:135–165, 2002). The results show that when combining
these three features, the description of the inflation is improved and that seasonality
changes smoothly with the regimes.
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1 Introduction

Long memory and nonlinearity have a large history in times series analysis for
macroeconomic data. Long memory models are useful in economics as a parsimoni-
ous way of modelling highly persistent process. On other hand, nonlinear time series
can be extremely informative about some aspects of the economy.
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In literature, long memory and nonlinearity are two principal features for US infla-
tion rates. Long memory can be described by a fractionally integrated model (FI)
introduced by Granger and Joyeux (1980) and Hosking (1981). Many studies pro-
vide strong evidence of long memory in US inflation rates, see Hassler and Wolters
(1995); Bos et al. (1999) and many other papers cited in Baillie (1996). Nonlinearity
feature of US inflation is well documented in the literature. For instance, Garcia and
Perron (1996) have used Markov switching autoregressive models to describe US
interest rate and inflation rates. In the same way, Evans and Lewis (1995) estimated a
Markov switching model with two regimes for US inflation data. Ben Aïssa et al.
(2004) used Bai and Perron’s and spectral density methods for detecting structural
changes in US inflation data. Warne and Anders (2006) studied two states Markov
switching VAR model for unemployment and inflation. Ghysels and Osborn (2001)
used periodic approaches of seasonal time series. Arteche (2002) studied seasonal
fractional integration models for inflation. Franses and Ooms (1997) used periodic
long memory models for inflation.

Generally, nonlinear dynamics were a relevant issue in the business cycles. In most
cases, empirical studies on business cycles have been done with seasonally adjusted
data. This implies that seasonal cycles are both regular and devoid of any economic
information. But many works suggest that seasonal fluctuations and business cycles
are closely related (see Miron and Beaulieu 1996; Franses 1996; Franses and Paap
1999). In contrast, Van Dijk et al. (2003) found that seasonality in quarterly industrial
production for the G7 countries changes over time. They conclude that this change is
mainly due to gradual institutional and technological change.

In view of this, we propose an univariate time series model able to capture non-
linearity, long memory and seasonality fluctuations. Up to now, there are no works to
bring together these features. Franses et al. (2000) proposed a seasonal smooth tran-
sition autoregression to capture nonlinearity and seasonal fluctuations in US unem-
ployment rate. Later, van Dijk et al. (2002) proposed a fractional integrated smooth
transition autoregressive model (FISTAR) to combine the concepts of fractional inte-
gration and smooth transition nonlinearity for US unemployment rate. In our paper,
we combine these two works to have a new model able to describe three features
which are fractional integration, nonlinearity (see Teräsvirta 1994, 1998; Granger and
Teräsvirta 1993) and seasonal fluctuations for a possible change according to regimes
(see Canova and Ghysels 1994).

The paper is organized as follows. In Sect. 2, we introduce the seasonal frac-
tional integrated smooth transition autoregressive model (SEA-FISTAR). In Sect. 3
we give the empirical specification procedures for our SEA-FISTAR model based on
the method proposed in Teräsvirta (1994) for the basic STAR model. The empir-
ical specification consists of some steps as nonlinearity test, estimation and mis-
specification tests. In Sect. 4 the model is fitted to quarterly US inflation rate. In
addition, the SEA-FISTAR model with its particular cases is compared with a sea-
sonal fractional integrated linear autoregressive model (SEA-ARFI). Finally, Sect. 5
concludes.
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2 Models

The seasonal FISTAR model is an extension of FISTAR model introduced by van Dijk
et al. (2002). Our modification consists in introducing an explicit description of the
seasonal pattern of the series, i.e. using seasonal dummy variables (See Franses et al.
2000). The seasonal FISTAR model is able to describe seasonality, non-linearity and
long memory in the time series.

The seasonal FISTAR model is given by:

(1 − L)d yt = xt (2.1)

with

xt =
(

S∑
s=1

Ds,tµ1,s

) (
1 − F

(
SF,t ; γF , cF

)) +
(

S∑
s=1

Ds,tµ2,s

)
× F

(
SF,t ; γF , cF

)

+
( p∑

i=1

φ1,i xt−i

) (
1 − G

(
SG,t ; γG , cG

)) +
( p∑

i=1

φ2,i xt−i

)

×G
(
SG,t ; γG , cG

) + εt (2.2)

d is the fractional integration degree of the process (see Granger and Joyeux 1980).
L is the backshift operator such that Lyt = yt−1. Ds,t are the seasonal dummy vari-
ables with Ds,t = 1 in season s, 0 elsewhere. S is the number of season in one
period, µ j,s are the seasonal means in regime j , j = 1, 2. φ j,i , i = 1, . . . , p, are
the autoregressive parameters in regime j . εt ∼ i.i.d.(0, σ 2

ε ). F
(
SF,t ; γF , cF

)
and

G
(
SG,t ; γG , cG

)
are two logistic transition functions which are defined as (see van

Dijk et al. 2002):

F
(
SF,t ; γF , cF

) =
[

1 + exp

(
− γF

σSF,t

(
SF,t − cF

))]−1

(2.3)

and

G
(
SG,t ; γG , cG

) =
[

1 + exp

(
− γG

σSG,t

(
SG,t − cG

))]−1

(2.4)

SF,t and SG,t are the two transition variables of the functions F and G respectively.
They can be a function of (yt−1, yt−2, . . .) or a linear deterministic trend. γF and γG

are the two parameters whose determine the smoothness of the functions F and G
respectively. σSF,t and σSG,t are the standard deviations of the two transition variables
SF,t and SG,t respectively. Finally, cF and cG are the thresholds of the transition from
one regime to another. F and G change smoothly from zero to one as the corresponding
transition variables SF,t and SG,t increase.

The transition functions F and G are assumed to be ranging from 0 to 1. The
extremes of G = 0 and G = 1 may be associated with two different regimes that is the
lower regime and the upper regime respectively. The speed of transition of G is deter-
mined by γG . If γG is small, then the transition of G from 0 to 1 takes a long period of
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time. However, if γG is large, the transition function G moves from 0 to 1 very quickly
and when γG is near +∞, this function change value from 0 to 1 instantaneously. F
has the same properties of G according to the value of γF .

Equations 2.1–2.2 are the general representation of the seasonal FISTAR models.
However, some particular cases can be discussed according to the variables and the
parameters values of the transition functions.

When γF = γG = 0, (2.2) reduces to a linear seasonal autoregressive model, that
is,

xt =
S∑

s=1

Ds,tµs +
p∑

i=1

φi xt−i + εt . (2.5)

If γF = 0, then F
(
SF,t ; γF , cF

) = 1
2 for all values of SF,t and (2.2) becomes:

xt =
S∑

s=1

Ds,tµs +
( p∑

i=1

φ1,i xt−i

)
(1 − G (St ; γ, c))

+
( p∑

i=1

φ2,i xt−i

)
× G (St ; γ, c) + εt (2.6)

in this case only the autoregressive parameters change between regimes. There is no
regime switching in the seasonal component.

When F
(
SF,t ; γF , cF

) = G
(
SG,t ; γG , cG

)
, the seasonal FISTAR model can take

the following representation:

xt =
(

S∑
s=1

Ds,tµ1,s +
p∑

i=1

φ1,i xt−i

)
× (1 − G (St ; γ, c))

+
(

S∑
s=1

Ds,tµ2,s +
p∑

i=1

φ2,i xt−i

)
G (St ; γ, c) + εt (2.7)

In this case, the seasonal FISTAR model is restricted in a way that both seasonal and
autoregressive parameters change simultaneously, and with the same speed of transi-
tion from µ1,s and φ1,i to µ2,s and φ2,i respectively, s = 1, . . . , S and i = 1, . . . , p.

3 Specification of Seasonal FISTAR Model

For non-linear time series models, Granger (1993) has suggested the use of a “specific
to general” procedure. To this aim, we extend the specification procedure elaborated
by Teräsvirta (1994) for STAR models and van Dijk et al. (2002) for FISTAR models
to specify the empirical representation of the seasonal FISTAR model in (2.1)–(2.2).

For a given data, our empirical specification consists of the following steps: First,
we specify the autoregressive order p for the adequate seasonal ARFI model using
the BIC criterion. Second, we test the null hypothesis of linearity against seasonal
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FISTAR model and select the appropriate transition function. Next, we estimate the
seasonal FISTAR model. Finally, we evaluate the model using diagnostic tests.

3.1 Nonlinearity Test

The null hypothesis of linearity holds if the seasonal and the autoregressive parame-
ters are constant over the different regimes, i.e., H0 : µ1,s = µ2,s and φ1,i = φ2,i ,
i = 1, . . . , p and s = 1, . . . , S. This null hypothesis can be expressed in another
way: H ′

0 : γF = γG = 0. The alternative hypothesis of non-linearity is given by
H1 : µ1,s �= µ2,s and/or φ1,i �= φ2,i , for at least one value of i , s.

It is clear from (2.1)–(2.2), that under the null hypothesis H ′
0, the parameters γF ,

cF , γG and cG are not identified. To resolve this problem, Luukkonen et al. (1988)
propose to replace the transition functions in (2.2) by their first order Taylor expan-
sion with respect to γ around 0. However, they have showed that LM1 test is enable to
detect nonlinearity when only the intercept differs across regimes. To overcome this
problem, they have suggested to approximate the transition functions by their third
order Taylor approximation. This yields the auxiliary regression:

xt = β
′
0 Dt + β

′
1 Dt SF,t + β

′
2 Dt S2

F,t + β
′
3 Dt S3

F,t + δ
′
0wt

+δ
′
1wt SG,t + δ

′
2wt S2

G,t + δ
′
3wt S3

G,t + et (3.1)

where Dt = (D1,t , . . . , DS,t )
′, wt = (xt−1, . . . , xt−p)

′, βi = (βi,1, . . . , βi,S)′, δi =
(δi,1, . . . , δi,p)

′, i = 0, 1, 2, 3 and et is the residual terms such that under H0, et = εt .
Hence, the null hypothesis H0

′ is equivalent to test H0
′′ : β1 = β2 = β2 = δ1 = δ2 =

δ3 = 0. This null hypothesis of linearity can be tested using Lagrange Multiplier [L M3]
statistic. The conditional log-likelihood, by assuming the normal distribution of the
errors, for observation t is written as:

lt = −1

2
ln(2π) − 1

2
ln(σ 2) − e2

t

2σ 2 (3.2)

Under the linearity hypothesis H0, the remaining partial derivatives are given by:
∂lt
∂βi

∣∣∣∣
H0

= 1
σ 2 ε̂t Dt Si

F,t ,
∂lt
∂δi

∣∣∣∣
H0

= 1
σ 2 ε̂twt Si

G,t and
∂lt
∂d

∣∣∣∣
H0

= − 1
σ 2 ε̂t

∑t−1
j=1

ε̂t− j

j
with i = 0, 1, 2, 3. Where ε̂t are the residuals obtained from the seasonal ARFI
model.

To constract the L M3 test for nonlinearity we follow Teräsvirta (1994) and van Dijk
et al. (2002). We estimate the seasonal ARFI model and we compute the residuals ε̂t

and the sum of squared residuals SS R0 = ∑T
j=1 ε̂2

t . Next, we regress ε̂t on Dt Si
F,t ,

wt Si
G,t and −∑t−1

j=1
ε̂t− j

j
, i = 0, 1, 2, 3; and we compute the sum of squared residuals

from this regression SS R1. The L M3 statistic is then given by L M3 = SS R0−SS R1
SS R1/T �

χ2(3(p + S)).
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For (2.6) and (2.7), auxiliary regressions and nonlinearity LM test can be performed
as for the general model. The nonlinearity test, discussed above, is carried out for dif-
ferent transition variables. When the null hypothesis is rejected, we select the most
appropriate transition variable based on the LM statistic values. That is, we select the
one with the smallest p-value.

3.2 Estimation

In this section we discuss the estimation method for the seasonal FISTAR model. When
the transition variable is selected from the non-linearity test in Sect. 2, we can estimate
the seasonal FISTAR model using Beran’s (1995) approximate maximum likelihood
estimator for ARFIMA model which was adapted by van Dijk et al. (2002) to estimate
the FISTAR model. The estimated parameters θ̂ are obtained by minimizing the sum
of squared residuals:

QT (θ) =
T∑

t=1

e2
t (θ) (3.3)

where θ = (µ′
1, µ

′
2, φ

′
1, φ

′
2, γF , γG , cF , cG , d)′, µ j = (µ j,1, . . . , µ j,S)′, φ j = (φ j,1,

. . . , φ j,p)
′, j = 1, 2, and et (θ) are the residuals from the seasonal FISTAR model.

Notice that the seasonal parameters µ1 and µ2 and the autoregressive parameters φ1
and φ2 can be estimated, conditional upon fractional parameter d and the parameters
of transition functions γF , γG , cF and cG , using Ordinary Least Square estimator (see
van Dijk et al. 2002).

Starting values needed in the optimization algorithm can be obtained using five
dimensional grid search over d, γF , γG , cF and cG . The selected starting values are
those that give the smallest estimator for the residuals variance σ̂ 2(γF , γG , cF , cG , d).

For the cases when γF = 0 or when F(SF,t ; γF , cF ) = G(SG,t ; γG , cG), the
estimation procedure is performed in a straightforward manner.

3.3 Misspecification Test

To evaluate the fitted seasonal FISTAR model, it is required to make some diagnostic
tests on the resulting residuals. Specially by testing the residuals serial correlation. In
this section, we extend the LM test for STAR model residuals correlation proposed by
Eitrheim and Teräsvirta (1996).

The null hypothesis of no residual autocorrelation for seasonal FISTAR model can
be tested against the alternative of serial dependence up to order q, given by

εt =
⎛
⎝ q∑

j=1

a j L j

⎞
⎠ εt + vt , (3.4)

with εt are the residuals from the seasonal FISTAR model, vt ∼ i id
(
0, σ 2

)
and L is

the lag operator. The hypothesis of serial independence of εt , H0 : a1 = a2 = . . . =
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Fig. 1 Quarterly seasonally unadjusted US inflation rate

aq = 0 can be tested by an L M test (see Eitrheim and Teräsvirta 1996). We
modify the no residual correlation LM test for STAR model by including the gradients
of vt with respect to the seasonal parameters, the parameters of transition function
F

(
SF,t ; γF , cF

)
and the fractional differencing parameter d.

4 Empirical Application

4.1 Data

Our data consists of quarterly USA unadjusted consumer price index based inflation
rates from 1958–3 to 2005–4. These data are obtained from the IMF’s International
Financial Statistics. Inflation rates are constructed by taking 100 time the first
difference of the natural log of the consumer price index. The inflation series with
189 observations is depicted in Fig. 1 and looking for this plot, it is clear that inflation
exhibits a nonlinearity behavior.

4.2 Empirical Specification

4.2.1 Nonlinearity Test

In this section, we start by selecting the autoregressive order for a seasonal linear
ARF I model to the US inflation rates. This model is estimated for different autore-
gressive orders. The appropriate one is given by the B I C criterion. We obtain p = 3
as the adequate for a maximum autoregressive order pmax = 5.

The next step consists in testing linearity against seasonal F I ST AR, based on L Mk-
type tests, where k = 1 and 3 is the order Taylor approximation. Linearity is tested
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Table 1 LM-type tests of nonlinearity

Transition variable L M1 L M3

Seasonal F I ST AR (F = 1
2 )

�4 yt−1 0.052 0.036
�4 yt−2 0.191 0.072
�4 yt−3 0.010 0.009
�4 yt−4 0.772 0.184

Seasonal F I ST AR (F = G)

�4 yt−1 0.029 8× 10−4

�4 yt−2 0.046 0.023
�4 yt−3 0.036 0.031
�4 yt−4 0.638 0.127

Seasonal F I ST AR (F �= G)

�4 yt−2 �4 yt−3 0.007 –
�4 yt−1 �4 yt−1 – 7× 10−4

Note. The table contains p-values of LM-type statistics nonlinearity where L Mk , k = 1 and 3, denote
the LM-type test for nonlinearity based on an k-th order Taylor approximation of F and G. For seasonal
FISTAR (F �=G) we have computed L Mk , k = 1 and 3 for 16 pairs (�4 yt−i , �4 yt− j ) where the first
element of each pairs is the transition variable of F and the second is the one of G with 1≤i, j≤4 and we
give the choice which corresponds to the minimal p-value

against the three representations (2.6), (2.7) and (2.2). Transition variables should be
free from seasonality (see Franses et al. 2000). Thus we use as potential transition
variables seasonal difference of yt , that is, �S yt−l = yt−l − yt−l−S with l = 1, . . . , 4.

Table 1 contains p-values of L Mk-type tests for different representations of the sea-
sonal F I ST AR models (2.6), (2.7) and (2.2). For the first representation, i.e. when
F = 1

2 , as in Eq. 2.6, the null hypothesis of linearity is tested by L M1 and L M3
tests for the different transition variables. Linearity is rejected at 5% level for both
transition variables �4 yt−1 and �4 yt−3 where the minimum p-values are obtained
with �4 yt−3.

For the second representation (2.7), i.e. F = G, the null hypothesis of linearity is
rejected at 5% significance level, based on both L M1 and L M3 tests, for transition
variables St = �4 yt−l , for l = 1, 2, 3. Based on LM p-value, we select �4 yt−1 as
transition variable.

For general model (2.2), the results of LM-type test for all possibility of tran-
sition variable pairs SF,t = �4 yt−dF and SG,t = �4 yt−dG , dF = 1, . . . , 4 and
dG = 1, . . . , 4, indicate that the appropriate transition variable is �4 yt−1 for both
transition functions F and G.

4.2.2 Estimation

When the transition variables are given from L M-type tests, seasonal F I ST AR model
is estimated for (2.6), (2.7) and (2.2) using approximate maximum likelihood method
discussed in Sect. 3. We also give the estimation results of a linear seasonal ARF I
model to make comparison with nonlinear models. We will select the appropriate
model between them to describe US inflation rates behaviour.

The estimation results of different models are reported in Table 2. In the second
column of Table 2, we present the results of seasonal ARF I estimation. The estimated
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Table 2 Summary of estimated models for US inflation rates

Parameters SE A-ARF I SE A-F I ST AR SE A-F I ST AR SE A-F I ST AR
(F = 1

2 ) (F = G) (F �= G)

d̂ 0.21 (0.189) 0.25 (0.046) 0.38 (0.092) 0.29 (0.162)
ĉG – – −0.46 (0.001) 0.61 (0.007) 0.39 (0.131)
γ̂G – – 1,397.60 (–) 127.20 (208.141) 33.64 (252.8)
ĉF – – – – – – −0.15 (0.043)
γ̂F – – – – – – 52.17 (181.7)
φ̂1,1 0.50 (0.177) 0.278 (0.161) 0.257 (0.120) 0.394 (0.189)
φ̂1,2 −0.12 (0.077) −0.393 (0.134) −0.219 (0.077) −0.161 (0.082)
φ̂1,3 0.41 (0.068) 0.054 (0.146) 0.235 (0.084) 0.288 (0.091)
φ̂2,1 – – 0.468 (0.083) 0.033 (0.279) 0.283 (0.162)
φ̂2,2 – – −0.041 (0.086) 0.294 (0.215) 0.108 (0.163)
φ̂2,3 – – 0.404 (0.082) 1.093 (0.215) 0.554 (0.132)
µ̂1,1 0.072 (0.069) −0.079 (0.065) −0.061 (0.065) −0.031 (0.120)
µ̂1,2 0.076 (0.069) 0.060 (0.068) 0.047 (0.065) 0.135 (0.121)
µ̂1,3 0.241 (0.063) 0.241 (0.060) 0.247 (0.068) 0.221 (0.107)
µ̂1,4 0.086 (0.066) 0.047 (0.063) 0.069 (0.066) 0.342 (0.107)
µ̂2,1 – – – – −0.715 (0.217) −0.133 (0.082)
µ̂2,2 – – – – −0.508 (0.231) 0.001 (0.081)
µ̂2,3 – – – – 0.048 (0.198) 0.261 (0.082)
µ̂2,4 – – – – 0.141 (0.307) −0.052 (0.094)

Note. Standard errors are given in parentheses

fractional integration parameter d̂ is equal to 0.21 but is not significant at 5% level.
The seasonal changing in the estimated means confirms the existence of seasonal
behaviour in the inflation rates.

The estimation results of the seasonal F I ST AR model specifications in (2.6), (2.7)
and (2.2) are given in column 3, 4 and 5 of Table 2 respectively. The estimated differ-
encing parameter d̂ is equal to 0.25 for (2.6), 0.38 for (2.7) and 0.29 for (2.2). They
are significant at 5% level except for d̂ in (2.2) which is significant at 10% level. This
suggests strong evidence of long memory in inflation rates. The estimated threshold
parameter ĉ in (2.6) and (2.7) are equal to −0.46 and 0.61 respectively. For (2.2) the
threshold parameters ĉG and ĉF are equal to 0.39 and −0.15 respectively. All thresh-
old parameters are significant at 5% level. Comparing φ̂1,i with φ̂2,i and µ̂1,s with
µ̂2,s , we can observe that in all cases there are different regimes in both seasonal and
autoregressive parameters.

4.3 Diagnostic and Comparison

The diagnostic on the different estimated models is based on the properties of result-
ing residuals. Three different tests are used to this aim: Jarque Bera normality test,
residuals autocorrelation test as described in Sect. 2 and finally a test for ARC H
effect.

Table 3 presents the different diagnostic results for the different models. Skew-
ness, Kurtosis and Jarque Bera statistics show that we cannot reject the hypothesis
of normality at 5% except for (2.6) and (2.2). Residuals autocorrelation test based on
L M statistics for seasonal F I ST AR models and based on Ljung-Box statistics for
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Table 3 Misspecification tests for estimated models

SE A-ARF I SE A-F I ST AR SE A-F I ST AR SE A-F I ST AR
(F = 1

2 ) (F = G) (F �= G)

SS R 26.238 23.559 21.842 22.207
AI C −1.831 −1.88 −1.913 −1.875
B I C −1.688 −1.65 −1.610 −1.536
SK −0.308 −0.475 −0.216 −0.581
K ur 3.405 3.759 3.487 4.014
J B 4.06 (0.131) 11.03 (0.04) 3.17 (0.205) 17.75 (0.0001)
ARC H(1) 3.28 (0.07) 1.092 (0.296) 8.44 (0.0037) 3.06 (0.08)
ARC H(4) 12.56 (0.014) 1.912 (0.752) 15.31 (0.004) 6.34 (0.174)
L MSC (1) 0.014 (0.906) 0.91 (0.34) 3.03 (0.08) 8.95 (0.003)
L MSC (2) 0.061 (0.970) 1.46 (0.24) 2.39 (0.09) 7.28 (0.001)
L MSC (3) 0.768 (0.857) 1.03 (0.38) 2.09 (0.10) 4.8 (0.003)
L MSC (4) 0.974 (0.914) 0.84 (0.50) 1.56 (0.19) 3.76 (0.006)
L MSC (8) 7.418 (0.492) 0.99 (0.45) 1.10 (0.37) 2.62 (0.010)

Note. The table presents misspecification tests for estimated models. SS R denotes the sum of squared resid-
uals, SK is skewness, K ur is Kurtosis, J B the Jarque-Bera test of normality of the residuals, ARC H(q)

is the LM test of no autoregressive conditional heteroscedasticity up to order q, and L MSC (q) denotes the
Ljung-Box statistics and F variant of LM test of no serial correlation in residuals up to order q for Seasonal
ARFI and Seasonal FISTAR, respectively. The numbers in parentheses represent p-values

seasonal ARF I model provide strong evidence for no residual autocorrelation except
for representation (2.2). The test of residual ARC H effect does not reject the hom-
oskedasticity hypothesis any longer for ARF I model and seasonal F I ST AR model
(2.7). Finally, results of residuals diagnostics suggest that B I C prefers ARF I model.
Whereas seasonal F I ST AR model (2.7) has the smallest AI C and sum of squared
residuals. In addition, the long memory parameter estimator d̂ in ARF I model is
not significantly different from 0. Thus we can conclude that the seasonal F I ST AR
model (2.7) is the most appropriate one to describe the US inflation rates behaviour.

In Fig. 2, we present the transition function in the selected FISTAR (F = G) over
transition variable �4 yt−1. As suggested by a large value of the estimated parameter
γ̂ , transition from one regime to another occurs suddenly at the estimated threshold
ĉ. The transition function over time is presented in Fig. 3. This transition function
can give further insight into the cyclical behaviour of inflation rates. Gt gives the
probability of the upper regime. When the probabilities are greater than 0.5, inflation
could be judged to be in the upper regime. It seems that transition function has sim-
ilar dynamics to the large value of inflation annual growth. However, the change of
transition function does not coincide with that of inflation because we use seasonal
differenced inflation as transition variable.

5 Conclusion

In this paper, we have defined a Seasonal Fractional Integrated Smooth Transition
model (SEA-FISTAR model) that allows for regime switching, long memory and
deterministic seasonality behaviours. We have used the specific to general procedure
to select the appropriate model for US quarterly inflation rates. We conclude that linear
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Fig. 2 Transition function versus �4 yt−1
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Fig. 3 Transition function versus time

seasonal ARFI model is outperformed by the nonlinear seasonal FISTAR model for
describing US inflation rates. An important feature we point out is that the seasonal
component is time dependent which changes with regimes; such behaviour can not be
identified if we consider seasonally adjusted data.
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